fx-82MS fx-85MS fx-220 PLUS fx-300MS fx-350MS (2-я редакция / S-V.P.A.M.)

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

Всемирный образовательный сайт «Касио»

https://edu.casio.com

Инструкции по эксплуатации доступны на нескольких языках на сайте

https://world.casio.com/manual/calc/

Содержание

Перед использованием калькулятора	3
О настоящем руководстве	
Инициализация калькулятора	
Предупреждения	
Начало работы	
Снятие футляра	
Включение и выключение питания	
Регулировка контрастности дисплея	5
Маркировка клавиш	6
Показания дисплея	7
Режимы вычислений и настройка калькулятора	9
Режим вычислений	9
Настройка калькулятора	9
Инициализация режима вычислений и других настроек	11
Основные вычисления	12
Ввод выражения и значений	12
Внесение исправлений по время ввода	12
Арифметические вычисления	13
Количество десятичных знаков количество значимых цифр	14
Пропуск последней закрывающей круглой скобки	
Вычисления простых дробей	15
Преобразование десятичных дробей ↔ простые дроби	
Преобразование смешанных дробей ↔ неправильные дроби	
Вычисления процентов	17
Вычисления с градусами, минутами и секундами	
(шестидесятеричными числами)	19
Ввод шестидесятеричных значений	19
Шестидесятеричные вычисления	
Преобразование шестидесятеричных и десятичных значений	19
Составные выражения (только для моделей fx-82MS/fx-85MS/	
fx-300MS/fx-350MS)	20
Использование технической записи	
Хронология и воспроизведение вычислений	
Хронология вычислений	
Повторное воспроизведение	
Использование функций памяти	
Память результатов (Ans)	
Переменные (A, B, C, D, E, F, M, X, Y) (только для моделей fx-82MS/	
fx-85MS/fx-300MS/fx-350MS)	
Независимая память (M)	
Очистка содержимого всех блоков памяти	24

Вычисление функций	. 25
(π) , натуральный логарифм по основанию e	
Pi (π)	
Натуральный логарифм по основанию e (только для моделей fx-82N fx-85MS/fx-300MS/fx-350MS)	
Тригонометрический функции, обратные тригонометрические	
функции	26
Тригонометрические функции	
Обратные тригонометрические функции	
Гиперболические функции, обратные гиперболические функции.	27
Преобразование единиц измерения углов	
Экспоненциальные функции, логарифмические функции	27
Экспоненциальные функции	27
Логарифмические функции	28
Степенные функции и функции нахождения корней	28
Преобразование прямоугольно-полярных координат	29
Функция вычисления факториала (!)	30
Случайное число (Ran#)	31
Случайное целое число (RanInt#) (только для модели fx-220 PLU	S)
	31
Функции перестановки ($n P r$) и сочетания ($n C r$)	31
Функция округления (Rnd)	32
Использование режимов вычислений	. 33
- Статистические вычисления (SD, REG*)	
*только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS	33
Среднеквадратичное отклонение (SD)	
Регрессионные вычисления (REG) (только для моделей fx-82MS/	
fx-85MS/fx-300MS/fx-350MS)	37
Технические данные	. 43
Ошибки	
Сообщения об ошибках	
Прежде чем предполагать, что калькулятор неисправен	
Замена батареи	
Приоритет порядка вычислений	
Стековая память	
Диапазоны вычислений, количество знаков и точность	
Диапазон вычисления и точность	
Диапазоны ввода и точность вычисления функций	
Технические характеристики	

Перед использованием калькулятора

О настоящем руководстве

- Компания CASIO Computer Co., Ltd. ни при каких обстоятельствах не несет ответственности за прямые, побочные, случайные или косвенные убытки в связи с приобретением или использованием настоящего изделия и поставляемых с ним принадлежностей.
- Кроме того, компания CASIO Computer Co., Ltd. не принимает никакие претензии других сторон, возникающих вследствие использования настоящего изделия и поставляемых с ним принадлежностей.
- Если не указано особо, предполагается, что все приведенные в настоящем руководстве примеры вычислений даны, когда калькулятор имеет первоначальные настройки по умолчанию. Используйте процедуру под заголовком «Инициализация калькулятора», чтобы вернуться к первоначальным настройкам по умолчанию.
- Сведения, содержащиеся в настоящем руководстве, могут изменяться без предварительного уведомления.
- Отображение данных на экране и рисунках (например маркировка клавиш), показанных в настоящем руководстве, приводится только для пояснений и может несколько отличаться от фактического.
- Наименования компаний и изделий, используемые в настоящем руководстве, могут быть зарегистрированными товарными знаками или товарными знаками их владельцев.

Инициализация калькулятора

Выполните следующую процедуру, когда хотите инициализировать калькулятор, вернуться к режиму вычислений и установить первоначальные параметры по умолчанию. Обратите внимание, что настоящая операция также сбрасывает все данные из памяти калькулятора.

fx-82MS/fx-85MS/fx-300MS/fx-350MS: ON SHIFT MODE (CLR) 3 (AII) \equiv fx-220 PLUS: ON CLR 3 (AII) \equiv

Предупреждения

Перед использованием калькулятора обязательно изучите приведенные ниже предупреждения.

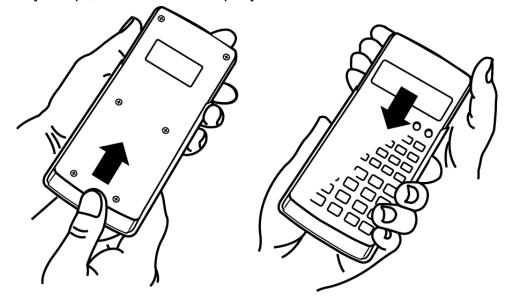
Меры безопасности

Батарея

- Храните батареи в недоступном для маленьких детей месте.
- Используйте батареи только того типа, который указан в настоящем руководстве.

Меры предосторожности при обращении с калькулятором

• Даже если калькулятор работает нормально, заменяйте батареи согласно приведенному ниже графику. Дальнейшее использование после указанного срока эксплуатации может привести к нарушению работоспособности. Замените батарею сразу после того, как выводимые на экране цифры потускнеют.


fx-82MS/fx-220 PLUS: Каждые два года fx-85MS/fx-300MS/fx-350MS: Каждые три года

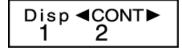
- Полностью разряженная батарея может протечь, вызвав повреждения и сбои в работе калькулятора. Никогда не оставляйте в калькуляторе полностью разряженную батарею.
- Батарея, которая поставляется с калькулятором, предназначена для заводских испытаний и немного разряжается во время транспортировки и хранения. В связи с этим срок службы батареи может быть меньше нормального.
- Не используйте в настоящем изделии батареи на основе никелевых элементов. Несовместимость между такими батареями и техническими характеристиками изделия может уменьшить срок действия батареи и вызвать отказ изделия.
- Избегайте использование и хранение калькулятора в местах с экстремальными значениями температуры и большим количеством влаги и пыли.
- Не подвергайте калькулятор чрезмерной ударной нагрузке, сжатию и изгибу.
- Никогда не пытайтесь разбирать калькулятор.
- Используйте мягкую сухую ткань для очистки внешних поверхностей калькулятора.
- При утилизации калькулятора или батарей обязательно соблюдайте требования местных нормативов и законодательства.

Начало работы

Снятие футляра

Перед использованием калькулятора сдвиньте футляр вниз, чтобы снять его, а затем прикрепите футляр к тыльной стороне калькулятора, как показано на рисунке ниже.

Включение и выключение питания


- Для включения калькулятора нажмите клавишу 🖎 .
- Для отключения калькулятора нажмите клавишу [SHIFT] AC (OFF).

Примечание

• Также калькулятор выключится автоматически, если он не будет использоваться в течение приблизительно 10 минут. Чтобы вернуть калькулятор во рабочее состояние нажмите клавишу [ON].

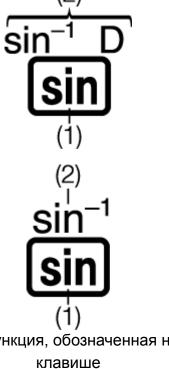
Регулировка контрастности дисплея

- 1. Нажмите MODE MODE MODE MODE.
 - Откроется экран настройки дисплея.

- 2. Нажмите 2.
- 3. С помощью 🕙 и 🕟 отрегулируйте контрастность дисплея.
- 4. После достижения желаемой контрастности нажмите ...

Важно!

• Если регулировка контрастности дисплея не улучшит читаемость, возможно, разрядилась батарея. Замените батарею.


Маркировка клавиш

fx-82MS/fx-85MS/fx-300MS/fx-350MS: Нажатие SHIFT или ALPHA с последующим нажатием второй клавиши выполняет дополнительную функцию, присвоенную второй клавише.

fx-220 PLUS: Нажатие अнг с последующим нажатием второй клавиши выполняет дополнительную функцию, присвоенную второй клавише. Дополнительная функция показана текстом, который нанесен над клавишей.

fx-82MS/fx-85MS/fx-300MS/ fx-350MS:

fx-220 PLUS:

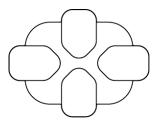
(1) Функция, обозначенная на

(2) Дополнительная функция

• Ниже показано, как обозначаются дополнительные функции различными цветами текста.

Цвет текста над клавишей:	Означает:
Желтый	Нажатие на आग, а затем на эту клавишу обеспечивает доступ к соответствующей функции.
Красный	Нажатие на (ДРНА), а затем на эту клавишу позволяет ввести соответствующую переменную, константу, функцию или символ. (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)

Цвет текста над клавишей:	Означает:
Синий (или в синих скобках)	Обеспечивает вход в режим SD и режим REG для доступа к функции. (только для моделей fx-82MS/fx-85MS/fx-300MS/ fx-350MS)


• Ниже приведен пример того, как в настоящем руководстве описывается работа с дополнительной функцией.

Пример: $sin (sin^{-1})^* 1 \equiv$

- * Указывает функцию, доступ к которой осуществляется с предварительным нажатием клавиши (SHIFT Sin). Обратите внимание, что данное действие не является частью фактически выполняемой клавишной операции.
- Ниже приведен пример того, как в настоящем руководстве описываются действия с клавишами для выбора пункта экранного меню.

Пример: 1 (COMP)*

- * Указывает на пункт меню, который выбран нажатием на цифровые клавиши с предварительным нажатием на клавишу (1). Обратите внимание, что данное действие не является частью фактически выполняемой клавишной операции.
- Маркированные четырьмя стрелками клавиши управления курсором указывают направление перемещения, как показано на ближайшем рисунке. В настоящем руководстве нажатия на клавиши управления курсором обозначены как ♠, ♠, ♠, и ▶.

Показания дисплея

Двухстрочный дисплей позволяет одновременно видеть как расчетную формулу, так и результат вычисления.

- (1) Расчетная формула
- (2) Результат вычисления
- (3) Индикаторы
- В приведенной ниже таблице описаны некоторые типичные индикаторы, которые отображаются в верхней части экрана (3).

Индикатор:	Обозначает:
S	Клавиатура переключена на верхний регистр нажатием клавиши आहा. После нажатия на любую клавишу верхний регистр отключится, а индикатор погаснет.
A	Нажатием на клавишу (ДРНА) включается алфавитный режим ввода. После нажатия на любую клавишу алфавитный режим ввода отключится, а индикатор погаснет. (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)
D/R/G	Указывает на текущие настройки единиц измерения углов в меню настроек (D : градус, R : радиан, или G : град).
FIX	Задано фиксированное число десятичных знаков.
SCI	Задано фиксированное число значащих цифр.
М	В независимой памяти содержится значение.
STO	Калькулятор находится в состоянии готовности к вводу имени переменной с целью присвоения ей значения. Индикатор появляется после нажатия клавиши [SHIFT] RCL (STO). (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)
RCL	Калькулятор находится в состоянии готовности к вводу имени переменной с целью вызова ее значения. Индикатор появляется после нажатия клавиши RCL. (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)

Режимы вычислений и настройка калькулятора

Режим вычислений

Прежде чем приступать к вычислениям, следует перейти в соответствующих режим, как указано в таблице ниже.

fx-82MS/fx-85MS/fx-300MS/fx-350MS

Для выполнения это операции:	Нажмите эти клавиши:
Общие вычисления	MODE 1 (COMP)
Среднеквадратичное отклонение	MODE 2 (SD)
Регрессионные вычисления	MODE 3 (REG)

fx-220 PLUS

Для выполнения это операции:	Нажмите эти клавиши:
Общие вычисления	MODE 1 (COMP)
Среднеквадратичное отклонение	MODE 2 (SD)

Примечание

- Первоначальный режим вычисления по умолчанию режим СОМР.
- В верхней части дисплея появится индикатор режима вычислений.
- Режимы вычислений COMP, SD, и REG могут использоваться в сочетании с настройками единиц измерения углов.
- Прежде чем приступать к вычислениям, обязательно проверьте режим вычислений (SD, REG, COMP) и настройки единиц измерения углов (Deg, Rad, Gra).

Настройка калькулятора

При нажатие на кла	вишу 🕪 более одного раза отображаются
экраны дополнитель	ьных настроек.
Подчеркнутые () настройки являются первоначальными по
умолчанию.	

1 Deg 2 Rad 3 Gra

Установка градусов, радиан или град в качестве единиц измерения углов для ввода и вывода результатов вычислений.

 $(90^{\circ} = \pi/2 \text{ радиан} = 100 \text{ град})$

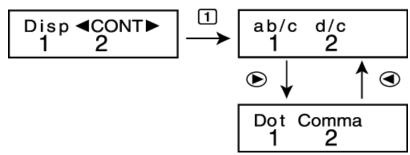
1 Fix 2 Sci 3 Norm

Установка количества цифр для отображения результата вычисления.

Fix: Вводимой цифрой (от 0 до 9) задается количество десятичных знаков в отображаемых результатах вычисления. Перед выводом на дисплей результаты округляются до указанного количества цифр.

Пример: $100 \div 7 = 14,286$ (Fix 3) 14,29 (Fix 2)

Sci: Вводимой цифрой (от 1 до 10) задается количество значащих цифр в отображаемых результатах вычисления. Перед выводом на дисплей результаты округляются до указанного количества цифр.


Пример: $1 \div 7 = 1,4286 \times 10^{-1}$ (Sci 5) $1,428571429 \times 10^{-1}$ (Sci 0)

Norm: Выбором одного из двух имеющихся параметров (<u>Norm 1</u>, Norm 2) задается диапазон отображения результатов в неэкспоненциальном представлении. Вне установленного диапазона результаты отображаются в неэкспоненциальном представлении.

Norm 1: $10^{-2} > |x|, |x| \ge 10^{10}$

Norm 2: $10^{-9} > |x|, |x| \ge 10^{10}$

Пример: $1 \div 200 = 5 \times 10^{-3}$ (Norm 1) 0,005 (Norm 2)

1 ab/c 2 d/c

Использование либо смешанной дроби (ab/c), либо неправильной дроби (d/c) для отображения дробей в результатах вычислений.

1 Dot 2 Comma

Использование точки или запятой в качестве десятичного разделителя результата вычисления. Во время ввода всегда отображается десятичный разделитель точка.

Dot: Точка в качестве десятичного разделителя

Comma: Запятая в качестве десятичного разделителя

Примечание

• Чтобы закрыть меню без выбора чего-либо, нажмите (АС).

Инициализация режима вычислений и других настроек

Выполнение следующих действий инициализирует режим вычислений и другие настройки, как показано ниже.

fx-82MS/fx-85MS/fx-300MS/fx-350MS: ON SHIFT MODE (CLR) 2 (Mode) = fx-220 PLUS: ON CLR 2 (Mode) =

Настройка:	Значение после инициализации:
Режим вычислений	COMP
Единицы измерения углов	Deg
Экспоненциальный формат отображения	Norm 1
Формат отображения дробей	a b/c
Символ десятичного разделителя	Dot

• Чтобы отменить инициализацию без выполнения каких-либо действий, нажмите AC (Отмена) вместо E.

Основные вычисления

Для выполнения основных вычислений используйте клавишу море, чтобы войти в режим вычислений СОМР.

— 0.

Ввод выражения и значений

Пример: 4 × sin30 × (30 + 10 × 3) = 120 (Единицы измерения углов: Deg)

 $4 \times \sin 30 \times (30 + 10 \times 3) = \begin{vmatrix} 4 \times \sin 30 \times (30 + 120) \\ 120 \times (30 + 120) \end{vmatrix}$

Примечание

- Область памяти, используемая для ввода выражения, может хранить 79 «шагов». Каждый раз при нажатии цифровой клавиши или клавиши арифметической операции заполняется один шаг памяти (+, -, \times , \div). Применение клавиш операций SHIFT или ALPHA (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS) не приводит к заполнению шага памяти, например, ввод SHIFT \bigwedge ($^{x}\sqrt{}$) заполняет только один шаг памяти.
- Для отдельного вычисления можно ввести выражение длиной до 79 шагов. Каждый раз после ввода 73-го шага любого выражения вид курсора изменяется с «_» на «■», чтобы вы знали о том, что память заканчивается. Если нужно ввести более 79 шагов, следует разделить вычисление на две или более частей.
- Нажатие клавиши Ans вызовет последний полученный результат, который можно использовать для последующего вычисления. Для получения дополнительных сведений об использовании клавиши Ans см. раздел «Использование функций памяти Память результатов».

Внесение исправлений по время ввода

- С помощью 🕙 и 🕟 переместите курсор в нужное место.
- Нажмите [FEL], чтобы удалить цифру или функцию в текущей позиции курсора.
- Нажмите अमा (INS), чтобы изменить курсор в режим вставки С. Пока курсор отображается в режиме вставки, любые вводимые данные будут вставляться в положении курсора.
- Нажатие अ [INS] или вернет курсор из режима вставки в нормальное состояние.

Пример 1: Чтобы исправить cos60 на sin60

$$\begin{array}{c|c} \cos 60 & & \\ \hline & 0. \\ \hline \\ \bullet & \sin \end{array} \begin{array}{c|c} \sin \underline{60} & \\ \hline \\ 0. \\ \hline \end{array}$$

Пример 2: Чтобы исправить выражение 369 × × 2 на 369 × 2

$$\begin{array}{c|c}
369 \times \times 2 \\
\hline
0.
\end{array}$$

Пример 3: Чтобы исправить $2,36^2$ на $\sin 2,36^2$

$$2 \cdot 36 x^{2} \qquad 0.$$

$$36 x^{2} \qquad 0.$$

$$sin [2]. 36^{2} \qquad 0.$$

Очистка всего вводимого выражения Нажмите **AC**.

Арифметические вычисления

- Отрицательные значения внутри вычислений должны быть заключены в круглые скобки. Дополнительные сведения см. в разделе «Приоритет порядка вычислений».
- В таком случае нет необходимости заключать отрицательное значение показателя степени в круглые скобки.

$$\sin 2.34 \times 10^{-5} \rightarrow \sin 2 \cdot 34 \times 10^{2}$$
 (-) 5

Пример 1:
$$23 + 4.5 - 53 = -25.5$$

Пример 2: $56 \times (-12) \div (-2,5) = 268,8$

$$56 \times (\bigcirc 12) \div (\bigcirc 2 \cdot 5) \equiv 268,8$$

Пример 3: $2 \div 3 \times (1 \times 10^{20}) = 6,6666666667 \times 10^{19}$

$$2 \div 3 \times 1 \times 10^{-2} = 6,66666667 \times 10^{-19}$$

Пример 4: $7 \times 8 - 4 \times 5 = 36$

Пример 5:
$$\frac{6}{4 \times 5} = 0.3$$

Пример 6: $2 \times [7 + 6 \times (5 + 4)] = 122$

$$2 \times (7 + 6 \times (5 + 4)) = 122,$$

Количество десятичных знаков количество значимых цифр

Чтобы изменить настройки количества десятичных знаков, количество значимых цифр или экспоненциальный формат отображения, нажимайте клавишу [МОВ] столько раз, чтобы открылся показанный ниже экран настроек.

Нажмите цифровую клавишу (1, 2 или 3), соответствующую пункту настроек, которые вы желаете изменить.

- 1 (Fix): Количество десятичных знаков
- 2 (Sci): Количество значимых цифр
- 3 (Norm): Экспоненциальный формат отображения

Пример 1: $200 \div 7 \times 14 =$

(Использование трех десятичных знаков.)

• Нажмите [MODE] · · · · · [3] (Norm) [1], чтобы очистить параметр Fix.

Пример 2: 1 ÷ 3, отображение результата с двумя значащими цифрами (Sci 2)

• Нажмите [MODE] · · · · · [3] (Norm) [1], чтобы очистить параметр Sci.

Пропуск последней закрывающей круглой скобки

Пример:
$$(2 + 3) \times (4 - 1 = 15)$$
 (2 + 3) \times (4 - 1 = 15,

Вычисления простых дробей

Пример 1:
$$\frac{2}{3} + \frac{1}{5} = \frac{13}{15}$$

Пример 2:
$$3\frac{1}{4} + 1\frac{2}{3} = 4\frac{11}{12}$$

Пример 3:
$$\frac{1}{2}$$
 + 1,6 = 2,1

Примечание

- Значения автоматически отображаются в десятичном формате, когда общее количество цифр простой дроби (целое число + числитель + знаменатель + разделительные метки) превышает 10.
- Результаты вычислений, которые включают дробные и десятичные значения, всегда десятичные.

Преобразование десятичных дробей ↔ простые дроби

Чтобы переключить отображение результата вычисления между дробным и десятичным форматом:

Нажмите 🕬.

Пример 1: 2,75 = $2\frac{3}{4}$ (Десятичная дробь → простая дробь)

$$=\frac{11}{4} \quad \text{SHIFT alg}(d/c) \qquad \qquad 11 \bot 4.$$

Пример 2: $\frac{1}{2} \leftrightarrow 0.5$ (Простая дробь \leftrightarrow десятичная дробь)

Преобразование смешанных дробей ↔ неправильные дроби

Чтобы переключить отображение результата вычисления между неправильной дробью и смешанной дробью:

Нажмите SHIFT (d/c).

Пример 1: $1\frac{2}{3} \leftrightarrow \frac{5}{3}$

1個2個2個23 🖃	1_ 2_ 3.
SHIFT (d/c)	5_ 3.
SHIFT (d/c)	1_ 2_ 3.

Примечание

- Можно использовать экран настройки дисплея (Disp), чтобы задать формат отображения, если результат вычисления дроби больше единицу.
- Чтобы изменить формат отображения дробей, нажмите клавишу MODE такое количество раз, пока не появится экран настроек, показанный ниже.

Disp **∢**CONT► 1 2

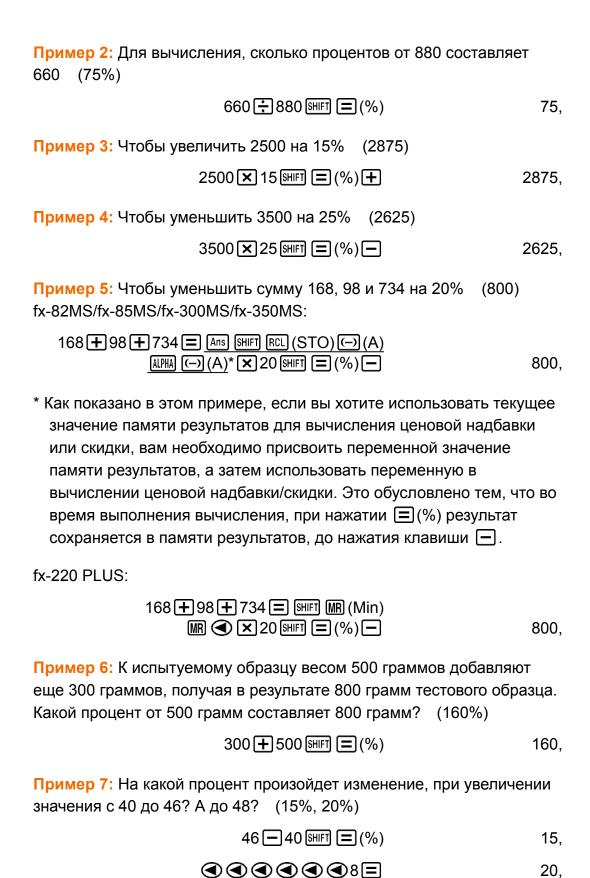
Экран выбора отображения.

1 (Disp)

ab/c d/c 1 2

Нажмите цифровую клавишу (**1** или **2**), соответствующую настройке, которую вы желаете использовать.

- 1 (ab/c): Смешанная дробь
- 2 (d/c): Неправильная дробь
- Если вы попытаетесь ввести смешанную дробь, в то время как выбран формат отображения d/c, произойдет ошибка.


Вычисления процентов

Тип вычисления	Формула расчета	Способ вычисления и действия с клавиш ами
Процент Пример 1	<u>A × B</u> 100	Какой процент составляет число В от числа А? АХВЫНП = (%)
Пропорция Пример 2	A/B × 100	Какой процент составляет число А от числа В? А ⊕ В ЅҸӺТ == (%)
Надбавка Пример 3	$A + \frac{A \times B}{100}$	Какой результат, если увеличить число А на процент В? АХВЫНП = (%)+
Скидка Пример 4 Пример 5	A - $\frac{A \times B}{100}$	Какой результат, если уменьшить число А на процент В? АХВЫНП = (%)—
Коэффициент изм енения (1) Пример 6	A + B × 100	Если число А добавить к числу В, на сколько процентов изменится число В? А Н В ЯНГТ = (%)
Коэффициент изм енения (2) Пример 7	A - B B × 100	Если от числа А отнять число В, на сколько процентов изменится число В? А—В ІЗНІГІ = (%)

Пример 1: Для вычисления 12% от 1500 (180)

1500 × 12 SHIFT = (%)

180,

20,

Вычисления с градусами, минутами и секундами (шестидесятеричными числами)

Можно выполнять вычисления с применением шестидесятеричных значений и преобразовывать шестидесятеричные величины в десятичные и обратно.

Ввод шестидесятеричных значений

Имеется следующий синтаксис для ввода шестидесятеричных значений.

{Градусы} •••• {Минуты} •••• {Секунды} ••••

• Обратите внимание, что всегда нужно вводить значения градусов и минут, даже если они равны нулю.

Пример: Ввести 2°0'30"

2°0°30,

Шестидесятеричные вычисления

Выполнение следующих типов шестидесятеричных вычислений приводит к получению шестидесятеричных результатов.

- Сложение или вычитание двух шестидесятеричных значений
- Умножение и деление шестидесятеричного и десятичного значения

Пример 1: 2°20'30" + 39'30"

3°0°0.

Пример 2: 12°34'56" × 3,45

12 ··· 34 ··· 56 ··· × 3 • 45 =

43°24°31.2

Преобразование шестидесятеричных и десятичных значений

Пример: Для преобразования десятичного значения 2,258 в шестидесятеричное значение, а затем обратно в десятичное значение

2 • 258 = 2,258

SHIFT (←) 2°15°28,8

2,258

Составные выражения (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)

С помощью двоеточия (:) можно объединить два и более выражения и выполнять их в последовательности слева направо при нажатии на клавишу **=**.

Пример: Чтобы сложить 2 + 3 и затем результат умножить на 4

Использование технической записи

Простое действие с клавиатурой преобразует отображаемое значение в техническую запись.

Пример 1: Для преобразования 56088 метров в километры \rightarrow 56,088 \times 10³ (км)

Пример 2: Для преобразования 0,08125 граммов в миллиграммы \rightarrow 81,25 × 10⁻³ (мг)

Пример 3: Преобразование значения 1234 в техническую запись смещением десятичного разделителя вправо.

1234
$$\equiv$$
 1234,
ENG 1,234×10⁰³
ENG 1234,×10⁰⁰

Пример 4: Преобразование значения 123 в техническую запись смещением десятичного разделителя влево.

123
$$\equiv$$
 123, SHIFT ENG (\leftarrow) 0,123×10⁰³ \oplus 0.000123×10⁰⁶

Хронология и воспроизведение вычислений

Хронология вычислений

В режиме СОМР калькулятор запоминает до 150 байт данных последних вычислений.

Индикаторы ▲ и/или ▼ в верхней части дисплея указывают, что выше и/или ниже имеется больше данных хронологии вычислений. Можно просматривать хронологию вычислений с прокруткой содержимого, используя клавиши ▲ и ▼.

Пример:

2,	+ 1 = 2 1 + 1 =	1 + 1 = 2
4,	+ 2 = 4 2 = 2 + 2 =	2 + 2 = 4
6,	+3=6 3 + 3=	3 + 3 = 6
4,	(Прокрутка назад.) 🌰	
2,	(Снова прокрутка назад.) 🌰	

Примечание

• Содержимое памяти хронологии вычислений удаляется при нажатии на клавишу ON, переключении в другой режим вычислений или при каждой инициализации режимов и параметров настройки.

Повторное воспроизведение

Когда результат вычисления на дисплее, можно нажать клавишу или , чтобы отредактировать выражение, использованное для предыдущего вычисления.

Использование функций памяти

Память результатов (Ans)

- Когда после ввода значений или выражения вы нажимаете результат вычислений автоматически обновляет содержимое памяти результатов, сохраняя результат.
- fx-82MS/fx-85MS/fx-300MS/fx-350MS: В дополнение к ≡, память результатов также обновляется, когда вы нажимаете आ ≡ (%), м+, м+ (м-), или м гс (STO) с последующим нажатием символа (от A до F, а также M, X или Y). fx-220 PLUS: В дополнение к ≡, память результатов также обновляется, когда вы нажимаете आ ≡ (%), м+, м+ (м-) или м (мн) (міп).
- Можно вызвать содержимое памяти результатов, нажав [Ans].
- Память результатов может хранить до 15 цифр мантиссы и две цифры показателя степени.
- Содержимое памяти результатов не обновляется, если операция, выполняемая любыми из указанных выше действиями с клавиатурой приводит к ошибке.

Последовательные вычисления

- Можно использовать результат вычисления, который в настоящее время находится на дисплее (а также сохранен в памяти результатов) в качестве первого значения вашего следующего вычисления. Обратите внимание, что нажатие клавиши операции во время отображения результата приводит к тому, что индикатор отображаемого значение изменяется на Ans, указывая, что это значение в настоящее время хранится в памяти результатов.
- Результат вычисления также может быть использован для последующей функции типа A (x^2 , x^3 , x^{-1} , x!, DRG \blacktriangleright), +, -, x^y , $\sqrt[x]{}$, \times , ÷, n P r и n C r.

Пример 1: Чтобы разделить результат 3 × 4 на 30

Пример 2: Чтобы выполнить показанное ниже вычисление:

$$123 + 456 = \underline{579} \qquad 789 - \underline{579} = 210$$

$$123 + 456 = \boxed{579} \qquad 579,$$

210,

Переменные (A, B, C, D, E, F, M, X, Y) (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)

Калькулятор имеет девять предварительно установленных переменных, именованных A, B, C, D, E, F, M, X и Y. Можно присваивать значения переменным и использовать переменные в вычислениях.

Пример:

Присвоить результат вычисления 3 + 5 переменной А

8,

Умножить значение переменной А на 10

(продолжение)
$$(A) \times 10 =$$

80,

Вызвать содержимое переменной А

8,

Очистить содержимое переменной А

0.

Независимая память (М)

Независимая память позволяет прибавлять результаты вычисления к ее содержимому, а также вычитать их из нее.

При наличии в независимой памяти значения отличного от нуля на дисплее появляется индикатор «М».

Пример 1:

Очистить содержимое памяти M fx-82MS/fx-85MS/fx-300MS/fx-350MS:

0,

fx-220 PLUS:

0,

Добавить результат вычисления 10 × 5 к памяти М

50,

Вычесть результат вычисления 10 × 5 от памяти М

15.

Вызвать содержимое памяти М fx-82MS/fx-85MS/fx-300MS/fx-350MS:

(продолжение) $\mathbb{R}^{\mathbb{C}L}$ \mathbb{M}^+ (M) 35,

fx-220 PLUS:

(продолжение) MR 35,

Пример 2:

23 + 9 = 32

53 - 6 = 47

 $-)45 \times 2 = 90$

 $99 \div 3 = 33$

(Итог) 22

fx-82MS/fx-85MS/fx-300MS/fx-350MS:

23 + 9 SHIFT RCL (STO) M+ (M) 32,

53 **-**6 M+ 47,

45 **x** 2 SHIFT M+ (M−) 90,

99 **÷** 3 M+ 33,

RCL M+ (M) 22,

fx-220 PLUS:

23 + 9 SHIFT MR (Min) 32,

53 **-** 6 M+ 47,

45 **×** 2 SHIFT M+ (M-) 90,

99**÷**3M+ 33,

MR 22,

Очистка содержимого всех блоков памяти

Независимая память и содержимое переменных сохраняются даже после нажатия **AC** или отключения калькулятора.

Для очистки содержимого всех блоков памяти выполните следующую процедуру.

 $fx-82MS/fx-85MS/fx-300MS/fx-350MS: \begin{tabular}{ll} ON & \hline SHIFT & MODE (CLR) & 1 & (McI) \\ \hline \end{tabular}$

fx-220 PLUS: ON CLR 1 (Mcl)

Вычисление функций

Для вычисления функций используйте клавишу [600], чтобы войти в режим вычислений СОМР.

[60] [1] (СОМР) — 0.

Использование функций может замедлить вычисление, и результат может отображаться с задержкой. Для прерывания выполняющегося вычисления до появления результата нажмите **AC**.

$Pi(\pi)$, натуральный логарифм по основанию e

Pi (π)

Можно вводить число рі (π) в вычисления.

Ниже показаны необходимые действия с клавиатурой и значение числа рі (π), которое использует данный калькулятор.

 $\pi = 3,14159265358980 \text{ (SHIFT } \text{x10}^{\text{X}}(\pi)\text{)}$

Число π отображается как 3,141592654, но для внутренних вычислений используется число π = 3,14159265358980.

Натуральный логарифм по основанию *е* (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)

Можно вводить в вычисления натуральный логарифм по основанию е

Ниже показаны необходимые действия с клавиатурой и значение числа e, которое использует данный калькулятор.

e = 2,71828182845904 (ALPHA) In (e)

Число e отображается как 2,718281828, но для внутренних вычислений используется число e = 2,71828182845904.

Тригонометрический функции, обратные тригонометрические функции

Тригонометрические функции

• Чтобы изменить единицы измерения углов по умолчанию (градусы, радианы, грады), нажмите клавишу [MODE] такое количество раз, пока не появится экран настроек единиц измерения углов, показанный ниже.

• Нажмите цифровую клавишу ($\boxed{1}$, $\boxed{2}$ или $\boxed{3}$), соответствующую единице измерения углов, которую вы желаете использовать. ($90^{\circ} = \pi/2$ радиан = 100 град)

Пример 1: $\sin 30^{\circ} = 0.5$ (Единицы измерения углов: Deg)

$$\sin 30 \equiv 0.5$$

Пример 2: $\cos(\frac{\pi}{3})$ = 0,5 (Единицы измерения углов: Rad)

$$\cos \left(\text{SHIFT } \times 10^{x} (\pi) \div 3 \right) = 0.5$$

Пример 3: tan(-35) = -0,612800788 (Единицы измерения углов: Gra)

-0,612800788

Обратные тригонометрические функции

Пример 1: sin⁻¹ 0,5 = 30° (Единицы измерения углов: Deg)

MODE · · · · · 1 (Deg)

SHIFT
$$\sin(\sin^{-1})$$
 0 • 5 = 30,

Пример 2: $\cos^{-1} \frac{\sqrt{2}}{2} = 0.25 \pi \ (= \frac{\pi}{4})$ (Единицы измерения углов: Rad)

SHIFT
$$\cos(\cos^{-1})$$
 (\checkmark 2 \div 2) =

Ans \div SHIFT $\times 10^{2}$ (π) =

0,25

Пример 3: tan⁻¹ 0,741 = 36,53844577° (Единицы измерения углов: Deg)

MODE · · · · · 1 (Deg)

SHIFT tan (tan⁻¹) 0 • 741 =

36,53844577

Гиперболические функции, обратные гиперболические функции

Пример 1: sinh 3,6 = 18,28545536

hyp sin (sinh) 3 • 6 =

18,28545536

Пример 2: $sinh^{-1} 30 = 4,094622224$

hyp SHIFT sin (sinh-1) 30 =

4,094622224

Преобразование единиц измерения углов

Нажмите SHIFT Ans (DRG ►), чтобы открыть следующее меню.

D R G 1 2 3

Нажатие 1, 2 или 3 преобразует отображаемое значение в соответствующую единицу измерения углов.

Пример: Для преобразования 4,25 радиан в градусы

MODE · · · · · 1 (Deg) 4 • 25 SHIFT Ans (DRG ►) 2 (R) = 4.25r 243.5070629

Экспоненциальные функции, логарифмические функции

Экспоненциальные функции

Пример 1: $e^{10} = 22026,46579$

SHIFT In (e^x) 10 =

22026,46579

Пример 2: $10^{1.5} = 31,6227766$

SHIFT $\log(10^x)$ 1 • 5 = 31,6227766

Пример 3: $2^{-3} = 0,125$

2▲⊝3≡

0,125

Пример 4: $(-2)^4 = 16$

((→2) ∧4 ≡ 16,

Примечание

• Отрицательные значения внутри вычислений должны быть заключены в круглые скобки. Дополнительные сведения см. в разделе «Приоритет порядка вычислений».

Логарифмические функции

Пример 1: $\log 1,23 = 0,089905111$

log 1 • 23 ≡ 0,089905111

Пример 2: In 90 (= $\log_e 90$) = 4,49980967

ln 90 **=** 4,49980967

Пример 3: In e = 1 (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)

In ALPHA In $(e) \equiv 1$,

Степенные функции и функции нахождения корней

Пример 1: $\sqrt{2} + \sqrt{3} \times \sqrt{5} = 5,287196909$

√2**+√**3**×√**5**=** 5,287196909

Пример 2: $\sqrt[3]{5} + \sqrt[3]{-27} = -1,290024053$

SHIFT $x^3(\sqrt[3]{})$ 5 + SHIFT $x^3(\sqrt[3]{})$ (-27) = -1,290024053

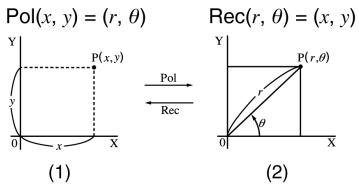
Пример 3: $\sqrt[7]{123}$ (= $123^{\frac{1}{7}}$) = 1,988647795

7 SHIFT $\bigwedge(\sqrt[x]{1})$ 123 = 1,988647795

Пример 4: $123 + 30^2 = 1023$

 $123 + 30 x^2 = 1023$

Пример 5:
$$12^3 = 1728$$


$$12x^3 \equiv 1728,$$

Пример 6:
$$\frac{1}{\frac{1}{3} - \frac{1}{4}} = 12$$

$$(3x) - 4x)) x = 12,$$

Преобразование прямоугольнополярных координат

Pol преобразует декартовы прямоугольные координаты в полярные координаты, а Rec преобразует полярные координаты в прямоугольные.

- (1) Прямоугольные координаты (Rec)
- (2) Полярные координаты (Pol)

Задайте единицу измерения углов перед выполнением вычислений. Результат вычисления θ отображается в интервале -180° < $\theta \le 180$ °. Результаты вычислений автоматически присваиваются переменным Е и F. (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)

Пример 1: Для преобразования полярных координат (r = 2, $\theta = 60^{\circ}$) в прямоугольные координаты (x, y) (Единицы измерения углов: Deg)

fx-82MS/fx-85MS/fx-300MS/fx-350MS:

$$x = 1$$
 SHIFT POI((Rec() 2 • 60)) = 1, 1, $y = 1,732050808$ RCL $tan(F)$ 1,732050808

• Нажмите \mathbb{RCL} \mathbb{COS} (E), чтобы отобразить значение x или \mathbb{RCL} \mathbb{COS} (F), чтобы отобразить значение y.

fx-220 PLUS:

$$x = 1$$

y = 1,732050808

SHIFT Rec(
$$(y, \theta)$$

1,732050808

1,

• Нажмите \mathfrak{SHFT} $\mathfrak{Poll}(x, r)$ \square чтобы отобразить значение x или \mathfrak{SHFT} $\mathfrak{Pecl}(y, \theta)$ \square , чтобы отобразить значение y.

Пример 2: Для преобразования прямоугольных координат (1, $\sqrt{3}$) в полярные координаты (r, θ) (Единицы измерения углов: Rad) fx-82MS/fx-85MS/fx-300MS/fx-350MS:

$$r = 2$$

2,

 θ = 1,047197551

1,047197551

• Нажмите $\mathbb{R}^{\mathbb{CL}}$ $\mathbb{C}^{\mathbb{CS}}$ (E), чтобы отобразить значение r или $\mathbb{R}^{\mathbb{CL}}$ $\mathbb{C}^{\mathbb{C}}$ $\mathbb{C$

fx-220 PLUS:

$$r = 2$$

2,

 θ = 1,047197551

SHIFT Rec(
$$(y, \theta)$$

1,047197551

• Нажмите \mathfrak{SHFT} $\mathfrak{Poll}(x, r)$ \blacksquare чтобы отобразить значение r или \mathfrak{SHFT} $\mathfrak{Pecl}(y, \theta)$ \blacksquare , чтобы отобразить значение θ .

Функция вычисления факториала (!)

Эта функция возвращает результат вычисления факториала аргумента, который может быть равен нулю или целому положительному числу.

Пример:
$$(5 + 3)! = 40320$$

$$(5+3)$$
 SHIFT $x^{-1}(x!)$

40320,

Случайное число (Ran#)

Функция генерирует псевдослучайное число в интервале от 0,000 до 0,999.

Пример: Генерирует три 3-значных случайных числа.

Случайные 3-значные десятичные значения преобразуются в 3-значные целые значения путем умножения на 1000.

Обратите внимание, что приведенные здесь значения показаны исключительно для примера. Реально генерируемые калькулятором значения будут другими.

634,	1000 SHIFT
92,	
175.	

Случайное целое число (RanInt#) (только для модели fx-220 PLUS)

Для ввода функции вида RanInt#(a, b), которая генерирует случайное целое число в диапазоне от a до b.

Пример: Для генерирования случайного целого числа в интервале от 1 до 6.

Обратите внимание, что приведенные здесь значения показаны исключительно для примера. Реально генерируемые калькулятором значения будут другими.

Функции перестановки (n P r) и сочетания (n C r)

Функции позволяют выполнять вычисления перестановок и сочетаний. n и r должны быть целыми числами в интервале $0 \le r \le n < 1 \times 10^{10}$.

Пример 1: Для определения количества различных 4-значных значений может быть получено из цифр от 1 до 7

• Цифры не могут повторяться в одном 4-значном значении (1234 допустимо, а 1123 недопустимо).

7 SHIFT
$$nCr(nPr)$$
 4 \blacksquare 840,

Пример 2: Для определения, сколько различных групп из 4 представителей может быть организовано в группе из 10 человек

Функция округления (Rnd)

С помощью функции Rnd производится округление десятичного дробного значения аргумента в соответствии с текущими настройками количества отображаемых цифр (Norm, Fix, Sci). При Norm 1 или Norm 2 аргумент округляется до 10 цифр.

Пример: Для выполнения следующих вычислений при выбранной установке количества отображаемых цифр Fix 3: 10 ÷ 3 × 3 и Rnd(10 ÷ 3) × 3

MODE
$$\cdots$$
 1 (Fix) 3
$$10 \div 3 \times 3 \equiv 10,000$$

$$10 \div 3 \equiv \text{SHIFT } \mathbf{0} (\text{Rnd}) \times 3 \equiv 9,999$$

Использование режимов вычислений

Статистические вычисления (SD, <u>REG</u>*)

*только для моделей fx-82MS/ fx-85MS/fx-300MS/fx-350MS

Среднеквадратичное отклонение (SD)

Для выполнения статистических вычислений с применением среднеквадратичного отклонения, используйте клавишу [MODE], чтобы перейти в режим SD.

- В режимах SD и REG, клавиша 🕪 действует как клавиша 🕅.
- Введите данные, используя показанную ниже последовательность клавиш.
 - < *x* -данные> **DT**
- Введите используемые для вычисления значений данные n, Σx , Σx^2 , \bar{x} , σ_n и s_x , которые можно вызвать при помощи описанных ниже действий с клавиатурой.

Для вызова	Нажмите эти клавиши:	
этого типа значений:	fx-82MS/ fx-85MS/ fx-300MS/ fx-350MS	fx-220 PLUS
Σ x ²	SHIFT 1 (S-SUM) 1 (Σ x^2)	SHIFT 4 (Σ x 2)
Σχ	SHIFT 1 (S-SUM) 2 (Σ x)	SHIFT 5 (Σx)

Для вызова	Нажмите эт	и клавиши:
этого типа значений:	fx-82MS/ fx-85MS/ fx-300MS/ fx-350MS	fx-220 PLUS
n	SHIFT 1 (S-SUM) 3 (n)	SHIFT 6 (n)
\bar{x}	SHIFT 2 (S-VAR) 1 (x̄)	SHIFT 7 (\bar{x})
σ_{x}	SHIFT 2 (S-VAR) 2 (σ x)	SHIFT 8 (σ_x)
S_x	SHIFT 2 (S-VAR) 3 (Sx)	SHIFT 9 (Sx)

Пример: Чтобы вычислить s_x , σ_x , \bar{x} , n, Σx , и Σx^2 для следующих данных: 55, 54, 51, 55, 53, 53, 54, 52 fx-82MS/fx-85MS/fx-300MS/fx-350MS:

В режиме SD:

SHIFT MODE (CLR) 1 (ScI) (Stat clear)

n= ^{SD} 1.

Каждый раз при нажатии $\boxed{\textbf{DT}}$ для регистрации ввода данных количество данных до этой точки отображается на дисплее (значение n).

54**DT**51**DT**55**DT**53**DTDT**54**DT**52**DT**

Выборочное среднеквадратичное отклонение (s_x) = 1,407885953

SHIFT 2 (S-VAR) 3 (
$$s_x$$
) = 1,407885953

Среднеквадратичное отклонение генеральной совокупности (σ_x) = 1,316956719

SHIFT 2 (S-VAR) 2 (
$$\sigma_x$$
) = 1,316956719

Среднее арифметическое (\bar{x}) = 53,375

SHIFT 2 (S-VAR) 1 (
$$\bar{x}$$
) = 53,375

Количество данных (n) = 8

SHIFT
$$1(S-SUM)(3(n))$$

Сумма значений (Σx) = 427

SHIFT
$$1 (S-SUM) 2 (\Sigma x) = 427$$
,

Сумма квадратов значений (Σx^2) = 22805

SHIFT 1 (S-SUM) 1 (
$$\Sigma x^2$$
)

22805,

fx-220 PLUS:

В режиме SD:

Каждый раз при нажатии $\boxed{\textbf{DT}}$ для регистрации ввода данных количество данных до этой точки отображается на дисплее (значение n).

54DT51DT55DT53DTDT54DT52DT

Выборочное среднеквадратичное отклонение (s_x) = 1,407885953

SHIFT
$$9(s_x) =$$

1,407885953

Среднеквадратичное отклонение генеральной совокупности (σ_x) = 1,316956719

SHIFT
$$8(\sigma_x)$$

1,316956719

Среднее арифметическое (\bar{x}) = 53,375

SHIFT
$$7(\bar{x})$$

53,375

Количество данных (n) = 8

8.

Сумма значений (Σx) = 427

SHIFT
$$5(\Sigma x)$$

427,

Сумма квадратов значений (Σx^2) = 22805

SHIFT
$$4(\Sigma x^2)$$

22805,

Правила ввода данных

- DT DT ввод одних и тех же данных дважды.
- fx-82MS/fx-85MS/fx-300MS/fx-350MS: Также можно многократно вводить одни и те же данные с помощью [ЯПЕТ] (;). Например, чтобы десять раз ввести число 110, нажмите 110 [ЯПЕТ] (;) 10 [ОТ]. fx-220 PLUS: Также можно многократно вводить одни и те же данные с помощью [ЯПЕТ] (;). Например, чтобы десять раз ввести число 110, нажмите 110 [ЯПЕТ] (;) 10 [ОТ].
- Можно выполнять описанные выше действия с клавиатурой в любом порядке, не обязательно, как показано выше.

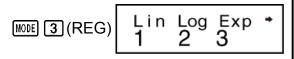
данные. Если одни и те же данные введены многократно с помощью [SHIFT] (;) (SHIFT] (;) на модели fx-220 PLUS) указывая частоту повторения данных (количество элементов данных), как описано выше, то при просмотре данных отображаются как элементы данных, так и отдельный экран с частотой повторения данных (Freq).

- При желании можно отредактировать отображаемые данные. Введите новое значение, а затем нажмите клавишу ≡, чтобы заменить старое значение на новое. Это также означает, что при желании можно выполнять некоторые другие операции (вычисления, вызов результатов статистических вычислений, и т.п.), но сначала всегда следует нажимать клавишу С, чтобы закрыть экран отображения данных.
- Нажатие на клавиши **DT** вместо **=** после изменения значения на экране зарегистрирует введенное значение в качестве нового элемента данных, а старое значение останется без изменений.
- Можно удалить отображаемые данные с помощью ♠ и ♠, нажав ЫПТ М+ (CL). Удаление данных приведет к сдвигу вверх всех значений, следующих за удаленными данными.
- Зарегистрированные данные сохраняются в памяти калькулятора. Если для хранения данных не осталось памяти, то появится сообщение «Data Full» (Память данных заполнена), и у вас не будет возможности вводить новые данные. Если это произошло, нажмите клавишу (), чтобы открыть показанный ниже экран.

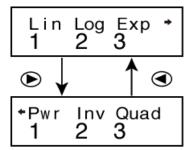
EditOFF ESC 1 2

Чтобы закрыть ввод данных без регистрации только что введенного вами значения, нажмите 2.

Если вы желаете зарегистрировать только что введенное вами значение без сохранения в памяти, нажмите 1. Однако, если вы это сделаете, то не сможете отображать или редактировать любые введенные вами данные.


- Для удаления только что введенных данных, нажмите [SHIFT] [M+] (CL).
- После ввода статистических данных в режиме SD или REG, вы не сможете больше отображать или редактировать отдельные элементы данных после выполнения следующих операций.

Переход в другой режим


Изменение типа регрессии (Lin, Log, Exp, Pwr, Inv, Quad)

Регрессионные вычисления (REG) (только для моделей fx-82MS/fx-85MS/fx-300MS/fx-350MS)

Для выполнения статистических вычислений с применением регрессии, используйте клавишу [MODE], чтобы перейти в режим REG.

- В режимах SD и REG, клавиша M+ действует как клавиша DT.
- При входе в режим REG отображается экран, подобный тому, который показан ниже.

- Нажмите цифровую клавишу (1, 2, или 3), соответствующую типу регрессии, которую вы желаете использовать.
 - 1 (Lin): Линейная регрессия
 - 2 (Log): Логарифмическая регрессия
 - 3 (Ехр): Экспоненциальная регрессия
 - ▶ 1 (Рwr): Степенная регрессия
 - ▶ ② (Inv): Обратная регрессия
 - ▶ 3 (Quad): Квадратическая регрессия
- Всегда начинайте ввод данных с आ (CLR) 1 (Scl) для очистки статистической памяти.
- Введите данные, используя показанную ниже последовательность клавиш.
 - < x-данные> $\boxed{ }$ < y-данные> $\boxed{ }$ $\boxed{ }$
- Значения, полученные в результате вычисления регрессии, зависят от введенных значений и результаты могут быть вызваны при помощи действий с клавиатурой, указанные в таблице ниже.

Для вызова этого типа значений:	Нажмите эти клавиши:
Σ x ²	SHIFT $1 (S-SUM) 1 (\Sigma x^2)$
Σχ	SHIFT 1 (S-SUM) 2 (Σx)
n	SHIFT 1 (S-SUM) 3 (n)

Для вызова этого типа значений:	Нажмите эти клавиши:
Σ y ²	SHIFT 1 (S-SUM) $lacktriangle$ 1 (Sy ²)
Σy	SHIFT 1 (S-SUM) ● 2 (Σ y)
Σχγ	SHIFT 1 (S-SUM) (3 (Σ <i>xy</i>)
\bar{x}	SHIFT 2 (S-VAR) 1 (x̄)
σ χ	SHIFT 2 (S-VAR) 2 (σ_x)
S_X	SHIFT 2 (S-VAR) 3 (Sx)
y ¯	SHIFT 2 (S-VAR) ● 1 (ȳ)
σ_y	SHIFT 2 (S-VAR) • 2 (σ _y)
S _y	SHIFT 2 (S-VAR) 3 (S _y)
Коэффициент регрессии А	SHIFT 2 (S-VAR)
Коэффициент регрессии В	SHIFT 2 (S-VAR) ▶ 2 (B)
Вычисление регрессии, кроме квадратической	
Коэффициент корреляции r	SHIFT 2 (S-VAR) ▶ 3 (r)
\hat{x}	SHIFT 2 (S-VAR)
ŷ	\$HFT 2 (S-VAR) ▶ ▶ 2 (ŷ)

• В следующей таблице показаны действия с клавиатурой, которые следует применять для вызова результатов, в случае вычисления квадратической регрессии.

Для вызова этого типа значений:	Нажмите эти клавиши:
Σ x ³	SHIFT 1 (S-SUM) \bullet 1 (Σx^3)
$\sum x^2y$	SHIFT 1 (S-SUM) $lacktriangle$ 2 ($\Sigma x^2 y$)
Σ x ⁴	SHIFT 1 (S-SUM) $lacktriangle$ 3 (Σx^4)

Для вызова этого типа значений:	Нажмите эти клавиши:
Коэффициент регрессии С	SHIFT 2 (S-VAR)
$\hat{x_1}$	SHIFT 2 (S-VAR) • • 1 (x̂1)
$\hat{x_2}$	SHIFT 2 (S-VAR) • • 2 (x2)
ŷ	SHIFT 2 (S-VAR)

• Значения в приведенных выше таблицах могут использоваться внутри выражений так же, как вы используете переменные.

Линейная регрессия

• Формула вычисления линейной регрессии: y = A + Bx.

Пример: Зависимость атмосферного давления от температуры Выполните линейную регрессию для определения ограничений формулы регрессии и коэффициента корреляции для расположенных ниже данных.

Температура	Атмосферное давление
10°C	1003 гПа
15°C	1005 гПа
20°C	1010 гПа
25°C	1011 гПа
30°C	1014 гПа

Далее примените формулу регрессии для расчета атмосферного давления при -5°C и температуры при 1000 гПа. И наконец вычислите коэффициент смешанной корреляции (r^2) и выборочную ковариацию $(\frac{\sum xy - n \cdot \bar{x} \cdot \bar{y}}{r_1 - 4})$.

В режиме REG:

Каждый раз при нажатии 🕅 для регистрации ввода данных количество данных до этой точки отображается на дисплее (значение n). 15 1005 T 20 1010 T 25 1011 T 30 1014 T Коэффициент регрессии А = 997,4 SHIFT 2 (S-VAR) ▶ 1 (A)= 997.4 Коэффициент регрессии В = 0,56 SHFT 2 (S-VAR) **▶** 2 (B) **=** 0,56 Коэффициент корреляции r = 0.982607368SHIFT 2 (S-VAR) ▶ 3 (r) = 0,982607368 Атмосферное давление при 5°C = 994,6 (\bigcirc 5) SHIFT 2 (S-VAR) \bigcirc \bigcirc 2 (\hat{y}) 994,6 Температура при 1000 гПа = 4,642857143 1000 SHIFT 2 (S-VAR) \triangleright \triangleright 1 (\hat{x}) = 4,642857143 Коэффициент смешанной корреляции = 0,965517241 SHIFT 2 (S-VAR) \triangleright 3 (r) x^2 = 0,965517241 Выборочная ковариация = 35

35,

Логарифмическая, экспоненциальная, степенная и обратная регрессия

- Чтобы вызвать результаты для этих типов регрессии, выполняйте те же действия с клавиатурой, как при вычислении линейной регрессии.
- Ниже показаны формулы для каждого типа регрессии.

Логарифмическая регрессия	$y = A + B \cdot \ln x$
Экспоненциальная регрессия	$y = A \cdot e^{B \cdot x} (\ln y = \ln A + Bx)$

Степенная регрессия	$y = A \cdot x^B (\ln y = \ln A + B \ln x)$
Обратная регрессия	$y = A + B \cdot 1/x$

Квадратическая регрессия

• Формула вычисления квадратической регрессии: $y = A + Bx + Cx^2$.

Пример:

Выполните квадратическую регрессию, чтобы определить ограничения формулы регрессии для расположенных ниже данных.

x_i	y _i
29	1,6
50	23,5
74	38,0
103	46,4
118	48,0

Далее примените формулу регрессии для расчета значений для \hat{y} (расчетное значение y) при x_i = 16 и \hat{x} (расчетное значение x) при y_i = 20.

В режиме REG:

SHIFT MODE (CLR) 1 (ScI) = (Stat clear)

Коэффициент регрессии А = -35,59856934

SHIFT 2 (S-VAR) ▶ 1 (A) = -35,59856934

Коэффициент регрессии В = 1,495939413

SHFT 2(S-VAR) \bigcirc 2(B) = 1,495939413

Коэффициенты регрессии $C = -6,71629667 \times 10^{-3}$

SHIFT 2 (S-VAR) \bullet 3 (C) = -6,71629667×10⁻³

 \hat{y} при x_i равном 16 = -13,38291067

16 SHIFT 2 (S-VAR) \triangleright \triangleright 3 (\hat{y}) = -13,38291067

 $\hat{x_1}$ при y_i равном 20 = 47,14556728

20 SHIFT 2 (S-VAR) \blacktriangleright \blacktriangleright 1 ($\hat{x_1}$) \equiv

47,14556728

 $\hat{x_2}$ при y_i равном 20 = 175,5872105

20 SHIFT 2 (S-VAR) \triangleright $2 (\hat{x_2})$

175,5872105

Правила ввода данных

- [DT] [DT] ввод одних и тех же данных дважды.
- Также можно многократно вводить одни и те же данные с помощью [SHIFT] • (;). Например, чтобы пять раз ввести числа «20 и 30», нажмите 20 • 30 [SHIFT] • (;) 5 [DT].
- Можно получить описанные выше результат, выполняя действия в любом порядке, не обязательно, как показано выше.
- Правила редактирования вводимых данных для вычисления среднеквадратичного отклонения также применимы для вычисления регрессии.
- Не используйте переменные от A до F, X или Y для хранения данных при выполнении статистических вычислений. Эти переменные используются в качестве временной памяти при выполнении статистических вычислений, поэтому любые данные, присвоенные этим переменным могут быть заменены на другие значения во время выполнения статистических вычислений.
- Вход в режим REG и выбор типа регрессии (Lin, Log, Exp, Pwr, Inv, Quad) очищает содержимое переменных от A до F, X и Y. Переход от одного типа регрессии к другому не меняя режим REG, также очищает эти переменные.

Технические данные

Ошибки

Когда во время вычисления по какой-либо причине появляется ошибка, калькулятор отобразит сообщение об ошибке.

- Нажмите или , чтобы вернуться на экран вычисления.
 Курсор будет находиться в месте ошибки, готовый к вводу.
 Выполните необходимые исправления в выражении и запустите расчет снова.
- Нажмите AC, чтобы вернуться на экран вычисления. Обратите внимание, что это также очищает выражение, содержащее ошибку.

Сообщения об ошибках

Математическая ошибка (Math ERROR)

Причина:

- Промежуточный или итоговый результат выполняемого вычисления выходит за пределы допустимого диапазона.
- Введенное значение выходит за пределы допустимого диапазона.
- Выполняемое вычисление содержит запрещенную математическую операцию (деление на ноль и др.).

Устранение:

- Проверить введенные значения, сократить количество цифр.
- Если в качестве аргумента функции берется содержимое независимой памяти или переменная, убедитесь, что они находятся в допустимом для функции интервале.

Ошибка в стеке (Stack ERROR)

Причина:

• Выполнение вычисления вызвало превышение емкости числового стека или стека команд.

Устранение:

- Упростить выражение.
- Попробовать разбить вычисление на две и более частей.

Синтаксическая ошибка (Syntax ERROR)

Причина:

• Проблема связана с форматом выполняемого вычисления.

Устранение:

• Внести необходимые исправления.

Ошибка аргумента (Arg ERROR)

Причина:

• Неправильное использование аргумента.

Устранение:

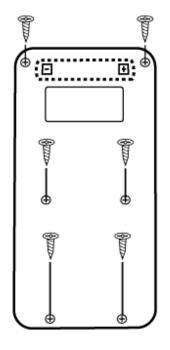
• Внести необходимые исправления.

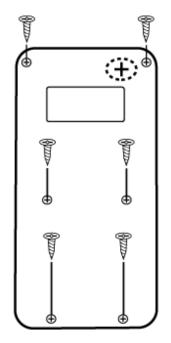
Прежде чем предполагать, что калькулятор неисправен...

Если возникла ошибка, а также если получены неожиданные результаты, выполните нижеописанные действия. Обратите внимание, что перед выполнением этих действий нужно сохранить отдельно копии важных данных.

- 1. Проверить, не содержит ли выражение ошибок.
- 2. Убедиться, что используемый режим соответствует виду выполняемого вычисления.
- 3. Если вышеописанные действия проблему не устраняют, нажать на клавишу ON.
- 4. Инициализировать все режимы и параметры настройки, выполнив следующие действия.

fx-82MS/fx-85MS/fx-300MS/fx-350MS: ON SHIFT MODE (CLR) 2 (Mode) = fx-220 PLUS: ON CLR 2 (Mode) =


Замена батареи


Необходимо менять батарею через определенное количество лет. Также замените батарею сразу после того, как выводимые на экран цифры потускнеют.

Потускнение цифр на дисплее даже в местах со слабым освещением, а также отсутствие индикации сразу после включения калькулятора указывает на разрядку батареи. Если это случилось, замените батарею новой.

Важно!

- Извлечение батареи из калькулятора приводит к очистке памяти.
- 1. Для отключения калькулятора нажмите клавишу आहा AC (OFF).
- 2. Выкрутив винты на тыльной стороне калькулятора, снимите крышку.

fx-82MS/fx-220 PLUS

fx-85MS/fx-300MS/ fx-350MS

- 3. Извлеките старую и установите новую батарею, соблюдая полярность контактов плюс (+) и минус (-).
- 4. Установите крышку на место.
- 5. Инициализируйте калькулятор. fx-82MS/fx-85MS/fx-300MS/fx-350MS: ON SHIFT MODE (CLR) 3 (AII) = fx-220 PLUS: ON CLR 3 (AII) =
 - Не пропустите вышеупомянутый шаг!

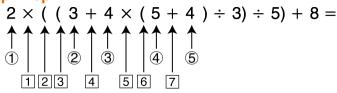
Приоритет порядка вычислений

Калькулятор выполняет вычисления в соответствии с заданным приоритетом порядка вычислений.

При равенстве приоритетов двух выражений вычисления выполняются слева направо.

1	Функция с круглыми скобками: $Pol(x, y)$, $Rec(r, \theta)$, RanInt# (a, b) * (*только для модели fx-220 PLUS)
2	Функции типа А: В этих функциях сначала вводится значение, после чего нажимается клавиша функции. (x^3 , x^2 , x^{-1} , $x!$, ° ' ", \hat{x} , \hat{x}_1 , \hat{x}_2 , \hat{y} , °, г, g)
3	Степени и корни: x^y , x
4	Дроби

5	Неявное умножение чисел π , e (основание натурального логарифма) на имя блока памяти или переменной: 2π , $3e$, $5A$, πA , и т.п.	
6	Функции типа В: В этих функциях сначала нажимается клавиша функции, после чего вводится значение. ($$, 3 , log, ln, e^x , 10^x , sin, cos, tan, sin ⁻¹ , cos ⁻¹ , tan ⁻¹ , sinh, cosh, tanh, sinh -1, cosh ⁻¹ , tanh ⁻¹ , (-))	
7	Неявное умножение функций типа В: 2√3, Alog2, и т.п.	
8	Перестановки ($n P r$), сочетания ($n C r$)	
9	Умножение, деление (×, ÷)	
10	Сложение, вычитание (+, -)	


• Отрицательный знак (-) рассматривается как функция типа В, поэтому от пользователя требуется особое внимание, если вычисления включают высокоприоритетную функцию типа А или действия со степенями и корнями.

Пример: $(-2)^4 = 16$; $-2^4 = -16$

Стековая память

В данном калькуляторе используются области памяти, называемые «стековой памятью», которые предназначены для временного сохранения значений (числовой стек) и команд (стек команд) во время выполнения расчетов в соответствии с их приоритетом. Числовой стек содержит 10 уровней, командный стек содержит 24 уровня. Ошибка в стеке (Stack ERROR) происходит всякий раз, когда вы пытаетесь выполнить очень сложное вычисление, которое приводит к переполнению стековой памяти.

Пример:

Числовой стек

1	2
2	3
3	4
4	5
⑤	4
÷	

Командный стек

1	×
2	(
3	(
4	+
5	×
6	(
7	+
:	

• Порядок вычисления выполняется в соответствии с «Приоритетом порядка вычислений». Команды и значения удаляются из стековой памяти по мере выполнения вычисления.

Диапазоны вычислений, количество знаков и точность

Диапазон вычисления, количество цифр, используемых для внутренних вычислений и точность вычисления зависят от типа выполняемого расчета.

Диапазон вычисления и точность

Диапазон вычисления	от ±1 × 10 ⁻⁹⁹ до ±9,999999999 × 10 ⁹⁹ или 0
Количество цифр для внутреннего вычисления	15 цифр

Точность	Обычно ±1 на 10 разрядов для отдельного вычисления. Точность экспоненциального отображения равна ±1 для наименьшего значащего разряда. В случае последовательных вычислений ошибки накапливаются.
----------	---

Диапазоны ввода и точность вычисления функций

Функции	Диапазон	ввода
$\sin x$ $\cos x$	Deg	$0 \le x < 9 \times 10^9$
	Rad	$0 \le x < 157079632,7$
	Gra	$0 \le x < 1 \times 10^{10}$
tan x	Deg	Такой же, как для $\sin x$, за исключением случаев, когда $ x = (2 n-1) \times 90$.
	Rad	Такой же, как для $\sin x$, за исключением случаев, когда $ x = (2 n-1) \times \pi/2$.
	Gra	Такой же, как для $\sin x$, за исключением случаев, когда $ x = (2 n-1) \times 100$.
$\sin^{-1} x$, $\cos^{-1} x$	$0 \le x \le 1$	
tan ⁻¹ x	$0 \le x \le 9,9999999999 \times 10^{99}$	
sinh x, $cosh x$	$0 \le x \le 230,2585092$	
sinh ⁻¹ x	$0 \le x \le 4,9999999999 \times 10^{99}$	
cosh ⁻¹ x	$1 \le x \le 4,9999999999 \times 10^{99}$	
tanh x	$0 \le x \le 9,9999999999 \times 10^{99}$	
tanh ⁻¹ x	$0 \le x \le 9,9999999999 \times 10^{-1}$	

Функции	Диапазон ввода
$\log x$, $\ln x$	$0 < x \le 9,999999999999999999999999999999999$
10 ^x	$-9,999999999 \times 10^{99} \le x \le 99,99999999$
e x	$-9,999999999 \times 10^{99} \le x \le 230,2585092$
\sqrt{x}	$0 \le x < 1 \times 10^{100}$
x ²	$ x < 1 \times 10^{50}$
x ⁻¹	$ x < 1 \times 10^{100}$; $x \neq 0$
$\sqrt[3]{x}$	$ x < 1 \times 10^{100}$
x!	$0 \le x \le 69$ (x является целым числом)
n P r	$0 \le n < 1 \times 10^{10}, 0 \le r \le n \ (n, r $ являются целыми числами) $1 \le \{n!/(n-r)!\} < 1 \times 10^{100}$
n C r	$0 \le n < 1 \times 10^{10}, 0 \le r \le n \ (n, r \ являются$ целыми числами) $1 \le n!/r! < 1 \times 10^{100}$ или $1 \le n!/(n-r)! < 1 \times 10^{100}$
Pol(x, y)	$ x , y \le 9,9999999999999999999999999999999999$
$Rec(r, \theta)$	$0 \le r \le 9,9999999999999999999999999999999$
0) "	$a \circ b' c$ ": $ a $, b , $c < 1 \times 10^{100}$; $0 \le b$, c Отображение значений секунд с ошибкой ±1 десятичный разряд.
← 01 "	$ x < 1 \times 10^{100}$ Преобразования десятичные \leftrightarrow шестидесятеричные значения $0^{\circ}0^{\circ}0^{\circ} \le x \le 9999999^{\circ}59^{\circ}$

Функции	Диапазон ввода
x ^y	$x > 0$: -1 × 10 ¹⁰⁰ < $y \log x$ < 100 x = 0: $y > 0x < 0: y = n, \frac{1}{2n+1} (n является целым числом)Однако: -1 × 10100 < y \log x < 100$
$x\sqrt{y}$	$y > 0$: $x \ne 0$, $-1 \times 10^{100} < 1/x \log y < 100$ y = 0: $x > 0y < 0: x = 2n + 1, \frac{1}{n} (n \ne 0; n является целым числом)Однако: -1 \times 10^{100} < 1/x \log y < 100$
$a^{b/c}$	Суммарное количество знаков целого числа, числителя и знаменателя должно быть 10 цифр или меньше (включая знак деления).
RanInt#(a, b)	$a < b \; ; a , b < 1 \times 10^{10} \; ; \; b - a < 1 \times 10^{10} \; (a \; , \; b$ являются целыми числами)

- Точность в основном такая же, как описано в разделе «Диапазон вычисления и точность» выше.
- Вычисления, в которых применяются показанные ниже функции и параметры настройки, для выполнения которых требуются внутренние непрерывные вычисления, могут приводить к накоплению ошибок на каждом шаге вычисления. x^y , $x \sqrt{y}$, x
- Вблизи особых точек и точек перегиба функций ошибки также накапливаются и могут достигать большой величины.
- Во время выполнения статистических вычислений ошибка накапливается, когда значения данных имеют большое количество цифр, и разница между значениями данных невелика. Ошибка будет большой, когда значения содержат более шести цифр.

Технические характеристики

fx-82MS/fx-220 PLUS

Требования к питанию:

Батарея размером AAA R03 (UM-4) × 1

Приблизительный срок службы батареи:

Два года (при работе один час в сутки)

Потребляемая мощность:

0,0001 BT

Рабочая температура:

От 0°С до 40°С

Габариты:

13,8 (В) \times 77 (Ш) \times 161,5 (Г) мм

Масса, приблизительно:

105 г с батареей

fx-85MS/fx-300MS

Требования к питанию:

Встроенный солнечный элемент; батарея таблеточного типа LR44 × 1

Приблизительный срок службы батареи:

Три года (при работе один час в сутки)

Рабочая температура:

От 0°С до 40°С

Габариты:

11,1 (В) \times 77 (Ш) \times 161,5 (Г) мм

Масса, приблизительно:

95 г с батареей

fx-350MS

Требования к питанию:

Батарея таблеточного типа LR44 × 1

Приблизительный срок службы батареи:

Три года (при работе один час в сутки)

Потребляемая мощность:

0,0001 Вт

Рабочая температура:

От 0°С до 40°С

Габариты:

11,1 (В) \times 77 (Ш) \times 161,5 (Г) мм

Масса, приблизительно:

95 г с батареей